Caveolae Restrict Tiger Frog Virus Release in HepG2 cells and Caveolae-Associated Proteins Incorporated into Virus Particles
نویسندگان
چکیده
Caveolae are flask-shaped invaginations of the plasma membrane. Caveolae play important roles in the process of viruses entry into host cells, but the roles of caveolae at the late stage of virus infection were not completely understood. Tiger frog virus (TFV) has been isolated from the diseased tadpoles of the frog, Rana tigrina rugulosa, and causes high mortality of tiger frog tadpoles cultured in Southern China. In the present study, the roles of caveolae at the late stage of TFV infection were investigated. We showed that TFV virions were localized with the caveolae at the late stage of infection in HepG2 cells. Disruption of caveolae by methyl-β-cyclodextrin/nystatin or knockdown of caveolin-1 significantly increase the release of TFV. Moreover, the interaction between caveolin-1 and TFV major capsid protein was detected by co-immunoprecipitation. Those results suggested that caveolae restricted TFV release from the HepG2 cells. Caveolae-associated proteins (caveolin-1, caveolin-2, cavin-1, and cavin-2) were selectively incorporated into TFV virions. Different combinations of proteolytic and/or detergent treatments with virions showed that caveolae-associated proteins were located in viral capsid of TFV virons. Taken together, caveolae might be a restriction factor that affects virus release and caveolae-associated proteins were incorporated in TFV virions.
منابع مشابه
Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly
Respiratory syncytial virus (RSV) is an enveloped virus that assembles into filamentous virus particles on the surface of infected cells. Morphogenesis of RSV is dependent upon cholesterol-rich (lipid raft) membrane microdomains, but the specific role of individual raft molecules in RSV assembly is not well defined. Here, we show that RSV morphogenesis occurs within caveolar membranes and that ...
متن کاملA role for caveolin 1 in assembly and budding of the paramyxovirus parainfluenza virus 5.
Caveolin 1 (Cav-1) is an integral membrane protein that forms the coat structure of plasma membrane caveolae and regulates caveola-dependent functions. Caveolae are enriched in cholesterol and sphingolipids and are related to lipid rafts. Many studies implicate rafts as sites of assembly and budding of enveloped virus. We show that Cav-1 colocalizes with the paramyxovirus parainfluenza virus 5 ...
متن کاملMajor histocompatibility complex class I molecules mediate association of SV40 with caveolae.
Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are label...
متن کاملEntry of dengue virus serotype 2 into ECV304 cells depends on clathrin-dependent endocytosis, but not on caveolae-dependent endocytosis.
Caveolae- and clathrin-mediated endocytosis are major internalization pathways used by several pathogens; however, their distinctive roles in dengue virus (DV) entry have not been addressed. In this study, we compared the involvement of caveolae- and clathrin-mediated endocytosis in the infectious entry of DV serotype 2 (DV2) into human endothelial-like ECV304 cells. Confocal microscopy study o...
متن کاملEbolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner
Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that cha...
متن کامل